A Novel Feature Matching Strategy for Large Scale Image Retrieval
نویسندگان
چکیده
Feature-to-feature matching is the key issue in the Bag-of-Features model. The baseline approach employs a coarse feature-to-feature matching, namely, two descriptors are assumed to match if they are assigned the same quantization index. However, this Hard Assignment strategy usually incurs undesirable low precision. To fix it, Multiple Assignment and Soft Assignment are proposed. These two methods reduce the quantization error to some extent, but there are still a lot of room for improvement. To further improve retrieval precision, in this paper, we propose a novel feature matching strategy, called local-restricted Soft Assignment (lrSA), in which a new feature matching function is introduced. The lrSA strategy is evaluated through extensive experiments on five benchmark datasets. Experiments show that the results exceed the retrieval performance of current quantization methods on these datasets. Combined with postprocessing steps, we have achieved competitive results compared with the state-of-the-art methods. Overall, our strategy shows notable benefit for retrieval with large vocabularies and dataset size.
منابع مشابه
Image Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملFeature Tracking for Wide-Baseline Image Retrieval
We address the problem of large scale image retrieval in a wide-baseline setting, where for any query image all the matching database images will come from very different viewpoints. In such settings traditional bag-of-visual-words approaches are not equipped to handle the significant feature descriptor transformations that occur under large camera motions. In this paper we present a novel appr...
متن کاملCombined Local and Global Features for Improving the Shape Retrieval
Content-based image retrieval (CBIR) is playing an important role in multimedia information retrieval. This paper proposes an effective solution for IR by combining shape description and feature matching. First, an effective shape description method which includes two shape descriptors is presented. Second, an effective feature matching strategy to compute the dissimilarity value between the fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016